

SHANGHAI JIAO TONG UNIVERSITY

Introduction:

- > Task: Design a novel multi-category rotation detector for small, cluttered and rotated objects.
- > Challenges:
 - The inconsistency between metric and loss
 - Boundary discontinuity
 - Square-like problem
- > Our main contributions:
 - We summarize three flaws in state-of-the-art rotation detectors, i.e. inconsistency between metric and loss, boundary discontinuity, and square-like problem, due to their regression based angle prediction nature.
 - We propose to model the rotating bounding box distance by Gaussian Wasserstein Distance (GWD) which leads to an approximate and differentiable Figure 1. IoU induced loss. It resolves the loss inconsistency by aligning model learning with accuracy metric and thus naturally improves the model.
 - Our GWD-based loss can elegantly resolve boundary discontinuity and squarelike problem, regardless how the rotating bounding box is defined. In contrast, the design of most peer works are coupled with the parameterization of box.
- Codes:https://github.com/yangxue0827/RotationDetection

Proposed Approach

 \succ Most of the IoU-based loss can be considered as a distance function. Inspired by this, we propose a new regression loss based on Wasserstein distance. First, we convert a rotating bounding box $B(x,y,w,h,\theta)$ into a 2-D Gaussian distribution $N(m, \Sigma)$.

$$\Sigma^{1/2} = \mathbf{RSR}^{\top}$$

$$= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \frac{w}{2} & 0 \\ 0 & \frac{h}{2} \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \overset{50}{}_{-50}$$

$$= \begin{pmatrix} \frac{w}{2}\cos^{2}\theta + \frac{h}{2}\sin^{2}\theta & \frac{w-h}{2}\cos\theta\sin\theta \\ \frac{w-h}{2}\cos\theta\sin\theta & \frac{w}{2}\sin^{2}\theta + \frac{h}{2}\cos^{2}\theta \end{pmatrix} \overset{-100}{}_{-50}$$

$$\mathbf{m} = (x, y)^{\top}$$

Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss

Xue Yang^{1,2,4}, Junchi Yan^{1,2}, Qi Ming³, Wentao Wang¹, Xiaopeng Zhang⁴, Qi Tian⁴ ¹Department of CSE, SJTU ²MoE Key Lab of Artificial Intelligence, AI Institute, SJTU ³School of Automation, Beijing Institute of Technology ⁴Huawei Inc.

. Boundary discontinuity under two bounding box definitions (top), and illustration of the square-like problem (bottom).

 \succ GWD has the following properties to solve all the problems in Figure 1:

Property 1: $\Sigma^{1/2}(w, h, \theta) = \Sigma^1$ **Property 2:** $\Sigma^{1/2}(w, h, \theta) = \Sigma^{1/2}(w, h, \theta)$

Property 3: $\Sigma^{1/2}(w, h, \theta) \approx \Sigma^1$

The Wasserstein distance between two probability measures can be expressed as fellow:

$$d^{2} = \|\mathbf{m}_{1} - \mathbf{m}_{2}\|_{2}^{2} + \mathbf{Tr} \left(\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2} - 2(\boldsymbol{\Sigma}_{1}^{1/2} \boldsymbol{\Sigma}_{2} \boldsymbol{\Sigma}_{1}^{1/2})^{1/2} \right)$$

Gaussian Wasserstein Distance Regression Loss:

$$L = \frac{\lambda_1}{N} \sum_{n=1}^{N} obj_n \cdot L_{gwd}(b_n, gt_n) + \frac{\lambda_2}{N} \sum_{n=1}^{N} L_{cls}(p_n, t_n)$$
$$L_{gwd} = 1 - \frac{1}{\tau + f(d^2)}, \quad \tau \ge 1$$

$$h^{1/2}(h, w, \theta - \frac{\pi}{2});$$

 $h^{1/2}(w, h, \theta - \pi);$

$$^{1/2}(w, h, \theta - \frac{\pi}{2}), \text{ if } w \approx h.$$

Experiments:

Ablation study for GWD on three dataset.

Method	BOX DEF.	REG. LOSS	DATASET	DATA AUG.	MAP ₅₀
	D_{oc} D_{oc}	SMOOTH L1 GWD	HRSC2016	P.F.C	84.28 85.56 (+1.28)
DETINANET	D_{oc} D_{oc}	SMOOTH L1 GWD	UCAS-AOD	K+F+O	94.56 95.44 (+0.88
KEIINAINEI	Doc Doc	SMOOTH L1 GWD			65.73 68.93 (+3.20
	D_{le} D_{le}	SMOOTH L1 GWD	DOTA	F	64.17 66.31 (+2.14
R ³ Det	D_{oc} D_{oc}	SMOOTH L1 GWD			70.66 71.56 (+0.90

Ablation study for GWD on two scene text datasets.

METHOD	REG. LOSS	DATASET	DATA AUG.	RECALL	PRECISION	HMEAN
	SMOOTH L1 GWD	MLT	F	37.88 44.01	67.07 71.83	48.42 54.58 (+6.16)
RETINANET	SMOOTH L1 GWD		r	71.55 73.95	68.10 74.64	69.78 74.29 (+4.51)
	SMOOTH L1 GWD	ICDAR2015	R+F	69.43 72.17	81.15 80.59	74.83 76.15 (+1.32)
R ³ Det	SMOOTH L1 GWD	ICDAR2015	F	69.09 70.00	80.30 82.15	74.28 75.59 (+1.31)
K DEI	SMOOTH L1 GWD		R+F	71.69 73.95	79.80 80.50	75.53 77.09 (+1.56)

Peer method comparison.

BASE DETECTOR	METHOD	BOX DEE	IMI	BD		SID	TRANVAL/TEST									TRAIN/VAL		
		DUA DEF.	INIL	EOE	PoA	SLI	BR [†]	SV [†]	LV^{\dagger}	SH^{\dagger}	HA^{\dagger}	ST [‡]	RA [‡]	7-мАР ₅₀	MAP ₅₀	MAP ₅₀	MAP ₇₅	MAP _{50:95}
	-	D_{oc}	~	~	~	×	42.17	65.93	51.11	72.61	53.24	78.38	62.00	60.78	65.73	64.70	32.31	34.50
	-	D_{le}	1	1	1	1	38.31	60.48	49.77	68.29	51.28	78.60	60.02	58.11	64.17	62.21	26.06	31.49
	IOU-SMOOTH L1 LOSS	D_{oc}	1	×	×	×	44.32	63.03	51.25	72.78	56.21	77.98	63.22	61.26	66.99	64.61	34.17	36.23
RETINANET	MODULATED LOSS	D_{oc}	1	×	×	×	42.92	67.92	52.91	72.67	53.64	80.22	58.21	61.21	66.05	63.50	33.32	34.61
	CSL	D_{le}	1	×	×	1	42.25	68.28	54.51	72.85	53.10	75.59	58.99	60.80	67.38	64.40	32.58	35.04
	DCL (BCL)	D_{le}	1	×	×	×	41.40	65.82	56.27	73.80	54.30	79.02	60.25	61.55	67.39	65.93	35.66	36.71
	GWD	D_{oc}	×	×	×	×	44.07	71.92	62.56	77.94	60.25	79.64	63.52	65.70	68.93	65.44	38.68	38.71
10	-	D_{oc}	~	~	~	×	44.15	75.09	72.88	86.04	56.49	82.53	61.01	68.31	70.66	67.18	38.41	38.46
R ³ Det	DCL (BCL)	D_{le}	1	×	×	×	46.84	74.87	74.96	85.70	57.72	84.06	63.77	69.70	71.21	67.45	35.44	37.54
	GWD	D_{oc}	×	×	×	×	46.73	75.84	78.00	86.71	62.69	83.09	61.12	70.60	71.56	69.28	43.35	41.56

\succ AP on different objects and mAP on DOTA.

											ma			ann					
	METHOD	BACKBONE	MS	PL	BD	BR	GTF	SV	LV	SH	TC	BC	ST	SBF	RA	HA	SP	HC	MAP ₅₀
	ICN (AZIMI ET AL., 2018)	R-101	~	81.40	74.30	47.70	70.30	64.90	67.80	70.00	90.80	79.10	78.20	53.60	62.90	67.00	64.20	50.20	68.20
8	ROI-TRANS. (DING ET AL., 2019)	R-101	\checkmark	88.64	78.52	43.44	75.92	68.81	73.68	83.59	90.74	77.27	81.46	58.39	53.54	62.83	58.93	47.67	69.56
9	CAD-NET (ZHANG ET AL., 2019)	R-101		87.8	82.4	49.4	73.5	71.1	63.5	76.7	90.9	79.2	73.3	48.4	60.9	62.0	67.0	62.2	69.9
H	SCRDET (YANG ET AL., 2019)	R-101	~	89.98	80.65	52.09	68.36	68.36	60.32	72.41	90.85	87.94	86.86	65.02	66.68	66.25	68.24	65.21	72.61
E	FADET (LI ET AL., 2019)	R-101	\checkmark	90.21	79.58	45.49	76.41	73.18	68.27	79.56	90.83	83.40	84.68	53.40	65.42	74.17	69.69	64.86	73.28
N	GLIDING VERTEX (XU ET AL., 2020)	R-101		89.64	85.00	52.26	77.34	73.01	73.14	86.82	90.74	79.02	86.81	59.55	70.91	72.94	70.86	57.32	75.02
10	MASK OBB (WANG ET AL., 2019)	RX-101	\checkmark	89.56	85.95	54.21	72.90	76.52	74.16	85.63	89.85	83.81	86.48	54.89	69.64	73.94	69.06	63.32	75.33
TA	FFA (FU ET AL., 2020)	R-101	1	90.1	82.7	54.2	75.2	71.0	79.9	83.5	90.7	83.9	84.6	61.2	68.0	70.7	76.0	63.7	75.7
-0	APE (ZHU ET AL., 2020)	RX-101		89.96	83.62	53.42	76.03	74.01	77.16	79.45	90.83	87.15	84.51	67.72	60.33	74.61	71.84	65.55	75.75
M	CENTERMAP (WANG ET AL., 2020A)	R-101	1	89.83	84.41	54.60	70.25	77.66	78.32	87.19	90.66	84.89	85.27	56.46	69.23	74.13	71.56	66.06	76.03
F	CSL (YANG & YAN, 2020)	R-152	1	90.25	85.53	54.64	75.31	70.44	73.51	77.62	90.84	86.15	86.69	69.60	68.04	73.83	71.10	68.93	76.17
12	RSDET-IL (OLAN ET AL., 2021)	R-152	1	89.93	84.45	53.77	74.35	71.52	78.31	78.12	91.14	87.35	86.93	65.64	65.17	75.35	79.74	63.31	76.34
	SCRDET++ (YANG ET AL., 2020)	R-101	1	90.05	84.39	55.44	73.99	77.54	71.11	86.05	90.67	87.32	87.08	69.62	68.90	73.74	71.29	65.08	76.81
	PIOLI (CHEN ET AL 2020)	DI.A-34		80.9	69.7	24.1	60.2	38.3	64.4	64.8	90.9	77.2	70.4	46.5	37.1	57.1	61.9	64.0	60.5
2	O^2 DNET (WELET AL. 2020)	H 104	1	80 31	82 14	17 33	61.21	71 32	74.03	78 62	00.76	82.23	81.36	60.03	60.17	58 21	66.08	61.03	71.04
O	P. P. S. DET (7HOLLET AL., 2020)	P-104	*	88 58	77.83	50.44	60 20	71.52	75 70	78.66	00.88	80.10	81.50	57 02	63.03	66 30	60.77	63 13	72.30
H	PRAVECTORS (VIET AL., 2020)	R-101	*	00.30	70.06	50.60	62.19	79 43	79 09	97.04	00.00	00.10	01.71	54.12	60.24	65 22	64.29	55 70	72.30
AE.	DBN (DAN FT AL. 2020)	K-101	×	00.33	19.90	47.00	64.10	76.90	70.90	01.94	90.65	05.50	04.33	57.65	61.02	60.20	60.62	50.10	72.32
E N	DKN (PAN ET AL., 2020)	H-104	*	89.71	82.34	47.22	64.10	70.22	74.45	85.84	90.57	80.18	84.89	57.05	61.93	69.50	09.05	38.48	75.25
D	R ^o DET (YANG ET AL., 2021B)	R-152	~	89.80	83.77	48.11	66.77	78.76	83.27	87.84	90.82	85.38	85.51	65.67	62.68	67.53	78.56	72.62	76.47
TS	POLARDET (ZHAO ET AL., 2020)	R-101	~	89.65	87.07	48.14	70.97	78.53	80.34	87.45	90.76	85.63	86.87	61.64	70.32	71.92	73.09	67.15	76.64
H	S ² A-NET-DAL (MING ET AL., 2020)	R-50	\checkmark	89.69	83.11	55.03	71.00	78.30	81.90	88.46	90.89	84.97	87.46	64.41	65.65	76.86	72.09	64.35	76.95
GL	R ³ DET-DCL (YANG ET AL., 2021A)	R-152	\checkmark	89.26	83.60	53.54	72.76	79.04	82.56	87.31	90.67	86.59	86.98	67.49	66.88	73.29	70.56	69.99	77.37
Ň	RDD (ZHONG & AO, 2020)	R-101	~	89.15	83.92	52.51	73.06	77.81	79.00	87.08	90.62	86.72	87.15	63.96	70.29	76.98	75.79	72.15	77.75
S	S ² A-NET (HAN ET AL., 2021)	R-101	1	89.28	84.11	56.95	79.21	80.18	82.93	89.21	90.86	84.66	87.61	71.66	68.23	78.58	78.20	65.55	79.15
	GWD (OURS)	R-152	~	89.66	84.99	59.26	82.19	78.97	84.83	87.70	90.21	86.54	86.85	73.47	67.77	76.92	79.22	74.92	80.23

