

SHANGHAI JIAO TONG UNIVERSITY

Wentao Wang¹, Li Niu^{1*}, Jianfu Zhang², Xue Yang¹, Liqing Zhang^{1*} ¹Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University ²Tensor Learning Team, RIKEN AIP

Introduction:

> Abstract:

- Feed-Forward inpainting methods: Train a convolutional neural network with adversarial training and inpaint the corrupted image by feed-forward inference.
- GAN inversion inpainting methods: First seek for the closest latent code in the latent space (input to the pretrained generator) for the corrupted image and then invert the latent code back to a complete image using the pretrained generator.
- Our method: We propose a hybrid inpainting framework which applies GAN inversion inpainting to assist feed-forward inpainting.

> Our Contributions:

- We propose a hybrid dual-path inpainting framework which assists in feedforward inpainting with GAN inversion.
- We propose a novel deformable fusion module in the generator to solve the misalignment issue when fusing the features from two paths.
- Extensive experiments prove that our method can produce more semantically reasonable and high-fidelity results than other state-of-the-art methods.

Method:

Figure 1. Illustration of four types of inpainting methods. (a) Feed-forward inpainting method. (b) Optimization-based GAN inversion inpainting method (c) Learning-based GAN inversion inpainting method. (d) Ours. The modules marked in orange are optimized during training.

Dual-path Image Inpainting with Auxiliary GAN Inversion

Figure 2. Hybrid Two-path Inpainting Network

Inversion Path

Find the closest latent code of the corrupted image I_m and extract the corresponding semantic intermediate features F_{s} from the pretrained GAN.

Feed-Forward Path

An auto-encoder inpainting network which fuses the the extracted semantic intermediate features from Inversion Path as extra semantic prior.

Deformable Feature Fusion Module

Figure 3. Two fusion strategies. (a) Simple fusion strategy. (b) Our deformable fusion module. In (a), simply concatenate features from two path will cause misalignment. In (b), our deformable fusion module can align the inversion path feature and solve the misalignment.

(b) Deformable Fusion Strategy

Experiments:

	Mask	Yeh et al. [25]	Lahiri et al. [12]	GC [29]	PICNet [33]	CoModGAN [32]	Ours
$\ell_1 \left(\% \right)^\downarrow$	0-10%	0.94	1.27	0.73	0.74	0.64	0.62
	10-20%	1.59	1.83	1.23	1.23	1.11	1.06
	20-30%	2.53	2.38	1.97	1.95	1.75	1.41
	30-40%	3.64	4.05	2.83	2.79	2.61	2.16
	40-50%	5.06	5.94	3.90	3.84	3.69	3.21
	50-60%	7.73	9.21	5.73	5.76	5.62	4.59
	Ave%	3.58	4.18	2.73	2.71	2.54	2.17
SSIM↑	0-10%	0.969	0.911	0.974	0.973	0.978	0.979
	10-20%	0.932	0.876	0.941	0.939	0.948	0.951
	20-30%	0.881	0.827	0.895	0.893	0.905	0.914
	30-40%	0.827	0.774	0.845	0.843	0.857	0.879
	40-50%	0.767	0.711	0.789	0.785	0.802	0.827
	50-60%	0.688	0.621	0.713	0.702	0.727	0.743
	Ave%	0.844	0.787	0.859	0.856	0.870	0.882
PSNR↑	0-10%	33.576	31.994	35.600	35.726	36.211	36.342
	10-20%	28.937	27.311	30.807	31.053	31.209	31.607
	20-30%	25.714	24.729	27.467	27.813	27.703	28.365
	30-40%	23.281	22.512	25.113	25.474	25.214	26.251
	40-50%	23.282	20.201	23.093	23.462	23.069	24.155
	50-60%	21.087	17.039	20.625	20.804	20.490	21.751
	Ave%	25.152	23.964	27.117	27.388	27.366	28.078
FID↓	0-10%	1.83	1.97	1.50	1.57	1.31	1.20
	10-20%	3.33	3.85	2.40	2.71	2.14	2.00
	20-30%	5.42	6.70	3.93	4.55	3.86	2.99
	30-40%	7.92	10.01	6.25	6.90	5.56	4.13
	40-50%	11.04	14.42	9.69	10.64	6.25	5.67
	50-60%	13.89	21.73	15.91	16.71	9.08	8.13
	Ave%	7.24	9.77	6.61	7.18	4.75	4.02

> Qualitative Comparison

> Quantitative Comparison on FFHQ